Diorgano, Dichloro-tin (IV) Complexes of 4-X-Benzohydroxamic Acid (X=Cl, OCH₃): Synthesis, Characterization, Antitumor Activity in *Vitro* and the Crystal Structure of *trans*- [Me₂Sn (L₂) ₂]

Jing Hua ZHAO¹, Tai Gang LIANG¹, Qing Shan LI¹*, Armando J.L. Pombeiro²

¹School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001 ²Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

Abstract: A series of diorganotin (IV) derivatives of R_2SnL_2 (R = Me, Et, *n*-Bu, ph or Cl; $L = L_1$ or L_2) and their corresponding mixed-ligand complexes $R_2Sn(L_1)(L_2)$ have been prepared and the structure of *trans*-Me₂Sn (L_2)₂ was characterized by FT-IR, ¹H, ¹³C and ¹¹⁹Sn NMR spectroscopies, MS, elemental analysis, melting points and X-ray diffraction. The structure-activity relationships were discussed.

Keywords: Diorganotin, X-ray diffraction, antitumor activity, synthesis.

Diorganotin (IV) complexes constitute a class of potential antitumor agents, which were active against P_{388} lymphocytic leukaemia and MCF-7 mammary tumor¹. Hydroxamic acids such as arylhydroxamic acid are strong bidentate O-donors with bioactivity². A few years ago, we initiated an investigation on the interactions between diorganotin (IV) acceptors and benzohydroxamic acid and its derivatives^{3, 4}, hoping that a synergic effect would occur. We found most of this type of diorganotin (IV) derivatives showed promising activity against a series of human tumor cell lines *in vitro*⁵. The results also proved that the diethyltin (IV) and dibutyltin (IV) complexes of benzohydroxamic acid, the simplest ligand in the family of arylhydroxamic acids, are the leading compounds^{3, 5}. In this paper we describe the synthesis of two arylhydroxamic acids, HL₁ (X = Cl) and HL₂ (X = OCH₃) (**Figure 1**) and use of them as ligands in tin (IV) complexes.

Experimental

Synthesis of the ligands HL₁ and HL₂

An ice cooled aqueous solution (30 mL) of NH₂OH·HCl (1.07 mol/L) was slowly added to an ice cooled aqueous solution (15 mL) of NaOH (4.13 mol/L). Methyl 4-chlorobenzoate (20 mmol) or methyl 4-methoxybenzoate (20 mmol) was then added to the solution under N₂ and the system was stirred at room temperature overnight. Then the pH value of the solution was adjusted to about 7.5 under ice cooling with 5 mol/L

^{*}E-mail: qingshanl@Yahoo.com

Jing Hua ZHAO et al.

HCl. The white precipitate formed was filtered off, recrystallized from methanol-water and dried to constant weight (75.5% yield for HL₁, 83% yield for HL₂, respectively).

Synthesis of the complexes 1-12

Dimethyltin (IV) dichloride (1 mmol), diethyltin (IV) dichloride (1 mmol), di-*n*-butyltin (IV) dichloride (1 mmol) or diphenyltin (IV) dichloride (1 mmol) was added to methanol solution (20 mL) of HL_1 or HL_2 and KOH (0.1 mol/L, respectively). The clear solution was stirred at room temperature overnight under N₂, water (20 mL) was then added, leading to form the precipitate, which was filtred off, washed with water and cold methanol, recrystallized from ethanol-chloroform (for complex 1, 4 and 8) or chloroform-light petroleum (for complex 2, 3, 5, 6 and 7) or ethanol-dichloromethane (for complex 9, 10, 11 and 12) and dried to constant weight.

Synthesis of the complexes 13-14

Tin tetrachloride (1 mmol) was added to a dichloromethane solution (25 mL) of HL_1 (0.08 mol/L). The reaction mixture was refluxed overnight, the hot solution was then filtered and the white crystals were formed slowly from the filtrate at room temperature. The physical data of complexes**1-14** are presented in **Table 1**.

Antitumor Activity in vitro

The antitumor activity against tumor cell lines was assayed by the MTT method. The result is presented in **Table 2**.

Results and Discussion

All the complexes except 13 and 14 are stable in air, insoluble in water and soluble in chloroform, acetone, DMSO and dilute alcohol. Complexes 13 and 14 are not stable to moisture. The complexes 9-12 in polar solvents gradually decompose to their corresponding single-ligand complexes R_2SnL_2 as inferred from IR and NMR spectra.

By comparing the IR spectra of the free ligands with those of the complexes, the strong broad band (O-H...O stretch) centered at *ca*. 2700 cm⁻¹ of the free ligands was disappeared in the latter. The $v_{C=0}$ at *ca*. 1680 cm⁻¹ shifted to *ca*. 1600 cm⁻¹ in the complexes indicated a coordination of the ligand in the monomeric form through the carbonyl oxygen. The IR spectra indicated the coordination of the ligand *via* both oxygen atoms of the CO-NH-O⁻ group. The ¹H NMR spectra provided further evidence for the mononuclear nature of the diorganotin (IV) derivatives. The ¹³C NMR spectra indicated that the carbon atom of the carbonyl was deshielded by *ca*. 1-2 ppm upon coordination. Deshielding was also observed for C (7) and C (4), but the resonances of the C (1), C (3) and -OCH₃ underwent an upfield shift upon coordination. The ¹¹⁹Sn NMR data showed the products were the typical hexacoordinated tin (IV) derivatives.

842 Diorgano, Dichloro-tin (IV) Complexes of 4-X-Benzohydroxamic Acid

No.	Compound	Color	mp (°C)	Yield (%)	Elemental Analysis:		Found (calc.) (%)
					С		Ν
						Н	
1	$Me_2Sn (L_1)_2$	white	205-206	45	38.93	3.32	5.14
					(39.22)	(3.27)	(5.72)
2	$Et_2Sn(L_1)_2$	white	>300	47	41.56	3.88	5.29
			100 101		(41.73)	(3.90)	(5.41)
3	$Bu_{2}^{*}Sn(L_{1})_{2}$	white	189-191	65	46.83	4.95	4.79
				10	(46.02)	(4.92)	(4.88)
4	$Ph_2Sn (L_1)_2$	white	235-237	48	50.65	3.51	4.38
-		1.1	210 222	10	(50.85)	(3.29)	(4.55)
5	$Me_2Sn (L_2)_2$	white	219-223	42	44.80	4.86	5.72
(1.1	(dec)	(2)	(44.93)	(4.62)	(5.82)
0	$Et_2Sn(L_2)_2$	white	188-190	62	47.27	5.30	5.67
-		1.1	110 112	40	(47.17)	(5.16)	(5.50)
7	$Bu_{2}^{n}Sn(L_{2})_{2}$	white	110-113	40	51.22	6.24	4.78
0		1.1	200 212	20	(50.99)	(6.07)	(4.96)
8	$Pn_2Sn (L_2)_2$	white	209-212	39	55.86	4.56	4.59
0		1 %	(dec)	~~	(55.56)	(4.34)	(4.63)
9	$Me_2Sn(L_1)(L_2)$	white	195-197	22	42.38	4.02	5.51
10		1.1	252 255	65	(42.05)	(3.95)	(5.77)
10	$Et_2Sn(L_1)(L_2)$	white	253-255	65	44.31	4.69	5.47
11	$\mathbf{D} = \mathbf{R} \cdot \mathbf{C} = (\mathbf{I} \cdot \mathbf{A} \cdot \mathbf{A})$	T : -1-4	106 200	40	(44.43)	(4.52)	(5.40)
11	$Bu_2Sn(L_1)(L_2)$	Light	196-200	48	48.15	5.48	4.70
12	Dh $\mathbf{C}_{\mathbf{n}}(\mathbf{I}_{-})(\mathbf{I}_{-})$	yellow	(dec)	70	(48.49)	(5.44)	(4.92)
12	$\operatorname{PII}_2\operatorname{SII}(L_1)(L_2)$	winte	155-158	70	54.01	3.90	5.42
12	$(\mathbf{I}_{1}) \in \mathbf{C}^{1}$		24C(1-z)	(0)	(53.20)	(3.81)	(4.60)
13	$(L_1)_2$ SnCl ₂	wnite	240(dec)	00	31.75	1.85	5.10
14	$(\mathbf{I}_{n}) \in \mathbf{S}_{n} \subset \mathbf{I}$	white	210(dee)	50	(31.08)	(1.90)	(3.28)
14	$(L_2)_2$ SnCl ₂	write	∠10(aec)	50	30.90	3.15	5.28
					(36.84)	(3.10)	(5.37)

Table 1 The physical data for the diorgano, dichloro-tin (IV) complexes

Table 2The data of the antitumor activity of the complexes *in vitro*

Compound	HL-60	KB	Bel-7402	Hela	В	Т
1 Me ₂ Sn (L ₁) 2	+	—	-	_	_	+
2 Et ₂ Sn (L ₁) 2	++	++	++	++	++	++
3 $Bu_{2}^{n}Sn(L_{1})_{2}$	+++	+++	++	++	++	++
4 Ph ₂ Sn (L ₁) 2	+	+	-	-	++	_
6 Et ₂ Sn (L ₂) 2	++	++	—	_	++	—
7 $Bu_{2}^{n}Sn(L_{2})_{2}$	++	++	++	++	+	—
8 Ph ₂ Sn (L ₂) 2	++	++	++	++	++	—
Cisplatin	++	++	++	++	++	+

" – " means $IC_{50} > 1 \times 10^{-4} \text{ mol/ L}$; " + " means $IC_{50} \le 1 \times 10^{-4} \text{ mol/ L}$; " ++ " means $IC_{50} \le 1 \times 10^{-5} \text{ mol/ L}$; " +++ " means $IC_{50} \le 1 \times 10^{-6} \text{ mol/ L}$.

The antitumor activity *in vitro* showed some structure-activity-relationships. The R group of the diorganotin (IV) complexes played an important role in the antitumor activity. The electronic influence of the X substituent of the hydroxamate ligands also affected the antitumor activity of the complexes. Hence, the antitumor activity is determined by a delicate balance of electronic effects of the ligands and the best

combination of dibutyltin (IV) ($R = Bu^n$) complexes with the chloro-substituted (X = Cl) hydroxamate ligand. The molecular structure of the complex Me₂Sn (L₂) ₂ is authenticated by single-crystal X-ray diffraction analysis in our laboratory. Its structure is presented in **Figure 2**.

Figure 1 Structure of the ligand

Figure 2 The crystal structure of *trans*- $[Me_2Sn(L_2)_2]$

Acknowledgment

The financial supports from the National Natural Science Foundation of China (No.39900185), from the State Commission of Science and Technology of China (NO.96-901-06-38) and from TRAPOYT are gratefully acknowledged.

References and Note

- 1. Crowe, P. J. Smith, G. Atassi, Chem. Biol. Interact., 1980, 436, 171.
- 2. A. Dobosz, N. Dudarenko, Z. O. Friksky, H. Kozlowski, J. Chem. Soc. Dalton Trans., 1999, 743
- 3. P. Yang, Q.S. Li, Chinese J. Structure. Chem., 1996, 15, 163.
- 4. Q.S. Li, P. Yang, Syn. React. Inorg-Organomet. Chem., 1996, 26, 561.
- 5. Q.S. Li, PhD. Thesis, Nanjing University, Sep., 1996.
- 6. The crystallographic parameters have been deposited in the editorial office of CCL.

Received 2 September, 2002